Non-Volatile Residue (NVR) Contamination from Dry Handling and Solvent Cleaning

Marjorie F. Sovinski
NASA/GSFC
Materials Engineering Branch, Code 541
July 23, 2009

- Background
- Items Tested
- Work Instructions
- Gravimetric Determination Method
- Contact Transfer Method
- NVR Calculation Equations
- Consumables Database
- Recommendations
- Questions

Background

- Non-volatile Residue (NVR) consists of organic molecules/compounds
 - Transferred to surfaces via dry handling or solvent contact
- NVR may adversely affect
 - Bonding strength
 - Cleanliness of optics
 - Cross Contamination via Outgassing or Contact Transfer
- Sources of NVR generally expected to be "clean"
 - Gloves
 - Wipes
 - Swabs
 - Garments
 - Bagging material & film
 - Tape
- Situations in which NVR may be an issue
 - Surface preparations
 - Clean room operations
 - Assembly of components
 - Cleaning
 - Project requirements/contamination allocations
 - Sensitive hardware near contaminated surfaces

Items Tested

Gloves

- Polyethylene
- Latex
- Nitrile
- Vinyl
- Polyurethane

Wipes

- Polyester
- Cotton

Swabs

- Cotton
- Poly

Miscellaneous

Cleanroom Paper

Garments

- Coveralls
- Beard Covers
- Bouffant Caps
- Shoe Covers
- Frocks

Bagging Material

- Static Shield Bags
- Poly Bags
 - Clear
 - Pink

Film

- LDPE Film
- Anti-static Film
- Silver Film
- Pink Poly anti-static film
- Packaging Film

Work Instructions

Work Instructions provide a standard method for analysis of consumables

- 541-WI-5330.1.20
 - Gravimetric Determination of Non-Volatile Residue in Clean Room Wipes and Swabs
- 541-WI-5330.1.21
 - Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples
- 541-WI-5330.1.27
 - Determination of Extractable Nonvolatile residue and Contact Transfer Residue from Cleanroom Garments
- **541-WI-8072.1.7**
 - Determination of Extractable Nonvolatile Residue (NVR) and Contact Transfer NVR from Bagging and Polymeric Films

Gravimetric Determination Method

Gloves & Wipes

- Extracted in 300ml solvent in an ultrasonic bath at 35°C
 - Solvent is typically isopropyl alcohol, acetone, or hexane
 - Gloves are extracted for 15 minutes
 - Wipes are extracted for 30 minutes
- Three trials
 - Gloves Each trial shall consist of two pieces of glove no less than 5cmx5cm and shall not contain any material from the fingers or cuff
 - Wipes Total area of tested wipes in each trial shall be no less than 1ft2
- Solvent is evaporated down to ~30ml in a RapidVap Evaporator using a nitrogen purge
- Remaining solvent is evaporated to dryness in clean, preweighed aluminum pans
- Residue is analyzed with Fourier Transform Infrared (FTIR)
 Spectroscopy

Swabs

- Extracted in 40ml solvent on a hot plate for 30 minutes
 - Solvent is typically isopropyl alcohol, acetone, or hexane
- Three trials
 - Each trial includes the equivalent of 5 cotton swabs
- Solvent is evaporated to dryness in clean, preweighed aluminum pans
- Residue is analyzed with Fourier Transform Infrared (FTIR)
 Spectroscopy

Gravimetric Determination Method

Garments & Miscellaneous Items

- Extracted in ~30-40ml isopropyl alcohol for 30 minutes
- Three trials, each consisting of an 8.7cm diameter piece of garment
- Solvent is evaporated to dryness in clean, preweighed aluminum pans
- Residue is analyzed with Fourier Transform Infrared (FTIR)
 Spectroscopy

Bagging Material & Film

- Interior of bag or surface of film is rinsed with ~50-70ml of isopropyl alcohol
- Three trials
- Solvent is evaporated to dryness in clean, preweighed aluminum pans
- Residue is analyzed with Fourier Transform Infrared (FTIR) Spectroscopy

Contact Transfer Method

Gloves

- A pre-cleaned, verified aluminum plate, 10cmx10cm minimum is inserted into a glove that has been turned inside out
- Three trials
- The inside out gloves with inserted aluminum plates are wrapped in foil and placed in a hydraulic press with 1000kg of weight for 90 minutes
- The plates are removed and rinsed with ~30ml isopropyl alcohol on both the front & back
 - Solvent is collected in clean, preweighed aluminum pans and evaporated to dryness
- Residue is analyzed with Fourier Transform Infrared (FTIR) Spectroscopy

Garments & Miscellaneous Items

- 6"x6" section of garment is sandwiched between two pre-cleaned pieces of aluminum foil (foil should be a minimum of 7"x7")
- A 6"x6"x1/4" stainless steel plate weighing approximately 5lb is placed on the foil/garment sample for 24 hours
- Three trials
- Rinse foil pieces which were in contact with garment sample with ~50ml of a 50/50 mixture of isopropyl alcohol and chloroform
 - Solvent for each trial shall be collected in a clean, preweighed aluminum pan
- Solvent is evaporated to dryness and residue is analyzed with Fourier Transform Infrared (FTIR)
 Spectroscopy

Bagging Material & Film

- A piece of aluminum foil large enough to fit inside the bag or to be sandwiched between the film (preferred area is (1ft²) shall be rinsed with spectroscopic grade chloroform
- Once dry, foil is placed inside bag/sandwiched between film and the bag/film is sealed
- The sample sits at room temperature for 10 days
- After 10 days, the foil is removed and rinsed with ~50-70ml isopropyl alcohol into a clean, preweighed aluminum pans and evaporated to dryness
- Residue is analyzed with Fourier Transform Infrared (FTIR) Spectroscopy
- A 24 hour test may be performed if enough bagging material is provided

NVR Calculation Equations

$$S_f - S_i = S_t$$

Calculation of Total Sample Weight (g)

$$S_t - S_b = S_a$$

Calculation of Adjusted Sample Weight (g)

$$\frac{S_a}{A} \times \frac{10^3 \,\mu g}{1mg} = NVR$$

Calculation of NVR for gloves, wipes, bags, film (µg/cm²)

$$\frac{S_a}{\#Swabs} = NVR$$

Calculation of NVR for Swabs (mg/swab)

$$\frac{S_a}{\pi \left(\frac{d}{2}\right)^2} \times \frac{10^3 \,\mu g}{1 mg} = NVR$$

 $\frac{S_a}{\pi (d/2)^2} \times \frac{10^3 \,\mu g}{1 mg} = NVR$ Calculation of NVR for garments (µg/cm²)

A = Area (cm ²)	S _b = Blank Sample Weight (mg)	S _t = Total Sample Weight (mg)
d= Diameter (cm)	S _f = Sample Post Weight (mg)	
S _a = Adjusted Sample Weight (mg)	S _i = Sample Initial Weight (mg)	

Consumables Database

Provides a way to track lot to lot variation

Allows a comparison of the performance of different types of consumables using the same procedure

Provides a useful resource for projects

A 'living' document, continuously updated with new data

Testing for Consumables Database

Consumable Item

- New Item
- Old Item (different lot)

Test for Acceptability

- Criteria determined by Codes 541 and 546 for general usage
- Add results to consumables database
- If material is purchased for general use on Center, Code 541 works to develop a fast QA inspection test that can be used as an incoming screening tool by the 549 contractor lab

Periodic Retest

 Periodic retest of items is necessary to catch any process changes

Recommendations

Gloves

- Polyethylene gloves are the first choice for use when solvent exposure is a possibility
- Some nitrile gloves are a suitable replacement for latex gloves, and often have lower NVR levels than latex gloves
 - Nitrile gloves intended to be used as a replacement for latex gloves should be tested prior to lab use
 - Nitrile gloves with a powder coating on the interior are not acceptable

Wipes

 Wipes should be extracted prior to use to reduce the amount of NVR

Questions

